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ABSTRACT: Some results in dissipative systems theory require that the supply rate 

be such that it can be forced negative by choice of input. In an earlier paper 

[Moy18] an eigenvalue condition was shown to be sufficient for this to be true. It 

now turns out that that condition is also necessary.  

1. Introduction 

 The theory of dissipative systems [Wil72] [HM80] [Moy14] defines a system to be dissipative if a 

certain quantity that depends on the input and output is nonnegative for all possible inputs For time-

invariant continuous-time systems this is normally expressed in terms of an integral:  

Definition 1. A system with input u and output y is dissipative, in the input-output sense, 

with respect to supply rate w iff  

∫ 𝑤(𝑢(𝑡), 𝑦(𝑡)𝑑𝑡 ≥ 0
𝑇

0

 

for all 𝑇≥0 and all inputs u.  

The supply rate is a function of two variables Suppose that it has the property that 𝑤(𝑢,𝑦)≥0 for all u 

and y. In that case, the above inequality will always be satisfied, so that every system is dissipative 

with respect to that supply rate. This is not a useful case. To make dissipativeness useful, we need to 

permit the supply rate to go negative, so that the inequality defines a property of the system rather 

than simply of w.  

Because of this, a class of “interesting” supply rates was introduced in [HM80]. 

Property A. For any 𝑦≠0, there exists a 𝑢(𝑦) such that 𝑤(𝑢(𝑦),𝑦)<0.  

Property A has proven to be useful in establishing several results. In [HM80], it turned out to be the 

main condition needed to ensure that an internal storage function is positive definite. In [Moy75] it 

was shown to be a condition that allowed establishing a link between time-domain and frequency-

domain criteria in linear-quadratic control theory. In [Moy14, chapter 8], which deals with frequency 

domain conditions for dissipativeness, it turns out to be the assumption needed to link behaviour on 

the 𝑗𝜔 axis to behaviour elsewhere on the complex plane. 

In this paper we are concerned with the case where the supply rate is a quadratic function of its 

arguments 

𝑤(𝑢, 𝑦) = 𝑦𝑇𝑄𝑦 + 2𝑦𝑇𝑆𝑢 + 𝑢𝑇𝑅𝑢 = [𝑦𝑇 𝑢𝑇] [
𝑄 𝑆

𝑆𝑇 𝑅
] [

𝑦
𝑢

] 

For clarity, then, we should probably restate Property A. 

Property B. For any 𝑦≠0, there exists a 𝑢(𝑦) such that [𝑦𝑇 𝑢𝑇] [
𝑄 𝑆

𝑆𝑇 𝑅
] [

𝑦
𝑢

] < 0.  
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2. The previous result  

Let u be an m-vector and y an n-vector, and define 

𝑀 = [
𝑄 𝑆

𝑆𝑇 𝑅
] 

Then the following result was shown in [Moy18]. 

Theorem 1. A sufficient condition for Property B to hold is that M have at least n 

negative eigenvalues. 

At the time, it was unclear whether an equally simple necessary condition could be found. 

3. Partitioning a finite-dimensional space 

Let M be a 𝑝 × 𝑝 matrix. Because it is real and symmetric, all of its eigenvalues are real, and its 

eigenvectors can be chosen1 to be mutually orthogonal. Suppose that it has 𝑝1 negative eigenvalues, 

and let 𝑥𝑖 be the corresponding eigenvectors, for 𝑖 = 1. . 𝑝1, Those vectors form a 𝑝1-dimensional 

subspace. Any vector in that subspace can be written as the sum 

𝑥 = ∑ 𝛼𝑖𝑥𝑖 

for some scalars 𝛼𝑖. Now we have 

𝑀𝑥 = ∑ 𝛼𝑖𝑀𝑥𝑖 = ∑ 𝛼𝑖𝜆𝑖𝑥𝑖 

𝑥𝑇𝑀𝑥 = ∑ 𝛼𝑗𝑥𝑗
𝑇 ∑ 𝛼𝑖𝜆𝑖𝑥𝑖 = ∑ 𝜆𝑖𝛼𝑖

2𝑥𝑖
𝑇𝑥𝑖 

where the final equality comes from the fact that 𝑥𝑗
𝑇𝑥𝑖 = 0 if 𝑗 ≠ 𝑖. Finally, we conclude that 

𝑥𝑇𝑀𝑥 < 0 for all 𝑥 in the space defined by the negative eigenvalues and their corresponding 

eigenvalues. 

By the same argument, we have 𝑥𝑇𝑀𝑥 = 0 for all 𝑥 in the 𝑝2-dimensional subspace defined by the 

eigenvectors corresponding to the zero eigenvalues, if any; and 𝑥𝑇𝑀𝑥 > 0 for all 𝑥 in the remaining 

𝑝3-dimensional subspace, with 𝑝1 + 𝑝2 + 𝑝3 = 𝑝. This leads to the following result. 

Lemma 1. The set of all 𝑥 such that 𝑥𝑇𝑀𝑥 < 0 is precisely the space spanned by the 

eigenvectors of 𝑀 corresponding to its negative eigenvalues. 

Proof. Let 𝑆−, 𝑆0, and 𝑆+ be the subspaces defined by the eigenvectors corresponding to the 

negative, zero, and positive eigenvalues, respectively. We have just shown that 𝑥𝑇𝑀𝑥 < 0 for all 

𝑥𝜖𝑆−, with corresponding results for the other two subspaces But, by the properties of eigenvectors, 

those three subspaces cover the entire 𝑝-dimensional space, with no overlap. (𝑆0 𝑖𝑠 e closed subspace, 

even though it is unbounded, while 𝑆− and 𝑆+ are open spaces, so there is no question of their 

overlapping at boundaries of the sets.) Clearly any 𝑥 such that 𝑥𝑇𝑀𝑥 < 0 cannot be in 𝑆0 or 𝑆+, so it 

must be in 𝑆−. 

This result has the following corollary. 

 
1 If two or more eigenvalues are equal, the corresponding eigenvectors are not uniquely defined. In this case it 

turns out to be possible to choose, among the possibilities, eigenvectors that are orthogonal to one another. 
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Lemma 2. Let 𝑥1, 𝑥2, … be a set of vectors such that 𝑥𝑖
𝑇𝑀𝑥𝑖 < 0 for all 𝑥𝑖 in the set. If 

the matrix [𝑥1 𝑥2 …] has rank 𝑘, then 𝑀 has at least 𝑘 negative eigenvalues. 

Proof. The space spanned by those vectors has dimension 𝑘, so 𝑝1 is at least as large as 𝑘, where 𝑝1 is 

the number of eigenvectors of 𝑀 corresponding to its negative eigenvalues. 

4. The main result 

We are now able to state the final result. 

Theorem 2. Let 𝑛 be the size of the output vector 𝑦. Then Property B holds iff the matrix 

𝑀 = [
𝑄 𝑆

𝑆𝑇 𝑅
] 

 has at least n negative eigenvalues. 

Proof. One half of this theorem was proved in [Moy18]. For the other half, let {𝑦𝑖} be a set of 𝑛 unit 

vectors. If Property B holds, then for each of those 𝑦𝑖 there exists a 𝑢𝑖 such that 𝑤(𝑢𝑖, 𝑦𝑖) < 0. Let 

𝑥𝑖 = [
𝑦𝑖

𝑢𝑖
] 

and form the matrix 

[𝑥1 𝑥2 … 𝑥𝑛] = [
𝑦1 𝑦2 … 𝑦𝑛

𝑢1 𝑢2 … 𝑢𝑛
] 

We know nothing about the linear independence, or otherwise, of the 𝑢𝑖, but this does not matter. By 

construction, the top 𝑛 rows of the overall matrix form a unit matrix, so the matrix we have 

constructed has rank 𝑛. From Lemma 2, the matrix 𝑀 must have at least 𝑛 negative eigenvalues. 

5. Conclusions  

Theorem 2 fills a hole in the theory of dissipative systems. We have known for a long time that 

Property A, and its more specific form Property B, are important to proofs of some results, and that it 

must be related in some way to the matrix that we here call 𝑀, but until now it was not clear that an 

eigenvalue condition could be a necessary and sufficient condition for the desired property. 
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